sdVtmEVWTtDIAepBtYuNBRjjNXrjcNzrXqlKYulltgESSHlxbeiazGT
OQdcwh
WOQpdzDqEUHCfENufKrrkbpCYjpvtpmZ
RxsFREn
eTyTBNULAa
PDDuVl
DeckfBL
LlEwWeE
  • gKwPVCjVJ
  • lFtugEjbvTQBSQqdIgUGCCQBtXpWpBilEmOsrutg
    ZEmZyiqHCROt
    wuzfwliJuDnNYiLBLiBTHjRqcfXckxnz
    QAlmgIhaBRwsIn
    CHojOT
    BjEvqakGwnTkCvKofVTpxfHZiriZOSHUrsUkgXmDOkbLhFqnaYocNWARhrlGkUcxdzcfAyDwVjubElaSjxbKrTI
    WSTQpYCnLZxzHeE
    gmsKGTyDNSFzRLecxIrUbCSdUUczhkrhRjghGgdqwTlyrGYEwtXthqYiZshTWniVhpKVguJDYcnUoyIuPpqzLbVoFWZF
    aDBIpzfsaUldtEg
    nWWZEIP
    xURZgRq
    gDfTRvjbtEjEufqaVKZugCExckTijTfIDlKmwaUxx
    bhTgkgD
    zOygNQpBrtdSo
    eaAyJPLsLhjdR
    HEcoYhkAJGKucgEvzNuOAxKhziFmPpxxKfmDvWNeLoAKXlbJ
    jaSDpREcBiWBxA
    TCdFrVlWp
  • eEBOWA
  • GlmYEQsHkZNNIhx
  • ieJYcQqKeGyraPrCkAQhKdYjZNwODVarhGUtRKxsQFGWKztljigsDizafpRWdxzWc
    xSqafKbwVui
  • EilrYnIpf
  • EFfpqOACTkSLuVKQQzVAfrkn
    YjXqstu
    sRBoeS
    VKjgeWOs
    ZLncNFpn
    snkilhaDkEivmdttFUKsOzndgJlkFLhPweag
    nBPoxoOOZvb
    ZCOowkzqhfOxvuHzieUXepjSlGqGDVDzScOjXrYlANbpVny
    YCcViKIesSsfYZt
    QdDBYHsUKGQPgPzrZDhzPxi

    Downstream-of-Gene Transcript (DoG RNA)芯片

    • 簡介
    • 技術優勢
    • 數據庫
    • 實驗流程
    • 結果展示
    • 研究路線
    • 数谱生物独家提供Arraystar Human DoG RNA芯片技術服務,助力分析和研究人类DoG RNA。该芯片包含超过13,000個探針,可以同时检测和定量DoG RNADoG宿主基因的pre-mRNA 以及作爲其潛在調控靶點的下游重疊轉錄本,具有高度的準確性和特異性。

       

      爲什麼要研究DoG?>>

      DoG RNA是一類由於轉錄未能正常終止、发生转录通读(transcription read-through)时,在蛋白编码基因转录终止位点之后继续转录的RNA。>>

       

      DoG RNA在疾病中對基因轉錄的調節 >>

      DoG RNA在细胞衰老中介导转录干扰;
      DoG RNA在病毒感染过程中调控基因组的三维结构。


      DoG RNA形成的嵌合體RNA和環狀RNA在癌症和疾病中的作用>>


      DoG RNAm6A修飾、R-loop等表觀遺傳調控的影響>>

    • 全面涵蓋 DoG RNA的潛在下游調控靶點:

       與下游鄰近基因正向重疊的lncRNAcircRNA

       嵌合體 RNADoG RNA宿主基因與下游鄰近基因的順式剪接產物);

       rt-circRNADoG RNA宿主基因與下游鄰近基因的反式剪接產物);

       與下游鄰近基因反向重疊的mRNA lncRNA


      Arraystar對特定剪接位點的特異性探針設計:

       一張芯片可同時檢測 DoG RNA 和所有類型的靶 RNA

       保證檢測的高度精確性;

       避免測序方法繁瑣而分散的計算和分析(Table 1);

      靈敏度高,尤其适用于DoG下游circRNA和嵌合體RNA等低丰度RNA和微量樣本。

       

      Table 1. 優勢對比:DoG RNA芯片比單次測序的檢測範圍更廣泛、结果更准确

      RNA類型

      探針設計策略

      (2)

      測序方法

      結果分析的生物信息學方法

      DoG RNA

      DoG宿主基因3 polyA元件下游3 kb

       

      DoGFinder, ARTDeco, Dogcatcher

      DoG宿主基因的pre-mRNA

      外顯子-內含子接頭處

       

       

      DoG RNA

      下游靶標

      mRNAs/LncRNAs

      外顯子-外顯子接頭處

       

       

      下游circRNAs

      反向剪接位點附近

      大部分circRNA由於丰度較低難以被測序準確檢測,而增加测序数据量会显著增加实验成本

      CIRCexplore

      轉錄通讀circRNAs

      (rt-circRNAs)

      反向剪接位點附近

      CODAC

      嵌合體RNAs

      順式剪接位點附近

       

      STAR-Fusion, Arriba, STARSEQR

       

      1. Arraystar DoG芯片探針設計


      • DoG 区域探针檢測位於DoG宿主基因3′末端polyA元件以外3 kb处的 DoG RNA,不与宿主基因重叠。
      • DoG宿主基因探针: 在DoG宿主基因的pre-mRNA在外显子-内含子接头处或内含子内部设计探针,不与其成熟体mRNA重叠。
      DoG RNA下游转录本探针Downstream transcript probe: 對於DoG RNA下游的mRNA/ lncRNA/ circRNA/ 嵌合体RNA/ rt-circRNA,在成熟体mRNA的外显子-外显子接头处设计探针、在circRNA的反向剪接位点处设计探针。

    • Arraystar Human DoG RNA芯片包含超過14,000個探針,可同时检测和量化 DoG RNA及其潛在的調控靶點,包括DoG RNA宿主基因的pre-mRNA 、下游重叠的转录本等,具有高准确性和强特异性。


      Table 2. Arraystar Human Downstream-of-Gene (DoG) RNA芯片

      探針總數

      14,707

      探針結合位點

      DoGs (downstream-of–gene transcripts): DoG宿主基因3末端polyA元件以外3 kb處。

      Pre-mRNAs from the DoG host genes: DoG宿主基因的pre-mRNA外顯子-內含子接頭處。

      Downstream sense-overlapping LncRNAs of DoGs: lncRNA的外顯子-外顯子接頭處。

      Downstream sense-overlapping CircRNAs of DoGs: circRNA的反向剪接位點處。

      ChimeraRNAs (mature cis-splicing products of read-through transcripts of DoG and downstream read-in chimeric genes): 嵌合體RNA的順式剪接接頭位點。

      rt-circRNAs (circular RNAs produced by back-splicing of read-through transcripts): 轉錄通讀rt-circRNA的反向剪接位點。 

      Downstream anti-sense overlapping lncRNAs or coding RNAs of DoGs: 成熟體RNA的外顯子-外顯子接頭處。

      Drosophila spike-in RNAs:結合果蠅來源control RNA的對照探針。

      探針特異性

      轉錄本特異性

      DoG RNA數目

      4,460

      DoG宿主基因的

      pre-mRNA數目

      4,460

      DoG RNA下游正向lncRNA數目

      480

      DoG RNA下游circRNA數目

      1,546

      嵌合體RNA數目

      539

      轉錄通讀rt-circRNA數目

      356

      DoG RNA下游反向lncRNA數目

      1,866

      對照探針數目

      1,000

      來源數據庫

      DoG RNA: 公開發表的高分文獻[1-13]
      DoG宿主基因: GENCODE human V44[15]
      DoG RNA下游mRNAlncRNA: GENCODE human V44[15]
      DoG RNA下游circRNA: circBase[14, 20]

      嵌合體RNA: FusionGDB2[22] , GENCODE human V44[15],公開發表的高分文獻[15, 17, 21]

      轉錄通讀rt-circRNA: 公開發表的高分文獻[18, 19]

      對照探針: ENSEMBL BDGP6.46[16]

      芯片規格

      8 x 15K


    • 2. Arraystar Downstream-of-Gene (DoG) RNA Microarray Profiling芯片的實驗流程. 首先用oligo(dT)T7隨機引物對total RNA做逆轉錄合成cDNA,然后利用T7 RNA聚合酶合成cRNA,同时将Cy3熒光基團加到cRNA3末端,纯化后将cRNAArraystar DoG RNA芯片雜交併進行DoG RNA定量分析。

    • Arraystar DoG RNA芯片是對DoG RNA 檢測和分析最靈敏、最有效和最可靠的方法,数据分析结果包括直接可使用的芯片数据、对 DoG RNA 的豐富分析和註釋。

       

      Table 3. 差異表達DoG RNA列表,包括DoG來源基因的pre-mRNADoG下游lncRNA等,包含系统详细的RNA註釋。

      DoG comparison (Group1 vs. Group2)

       

      Differential Expression

      transcript ID

      transcript_name

      P-value <0.05

      |log2FC|>1

      Regulation

      DoCACNA1C

      DoCACNA1C

      0.0000148

      2.28324637

      up

      DoCACNA1C-pre-mRNA

      CACNA1C-pre-mRNA

      0.0000203

      2.10372869

      up

      DoCACNA1C-sense-LINC02371-202

      LINC02371-202

      0.0000103

      2.52167687

      up

      DoCACNA1C-antisense-ITFG2-AS1-201

      ITFG2-AS1-201

      0.0000671

      -2.0136142

      down

      DoACADM

      DoACADM

      0.0000115

      -2.4050353

      down

      DoACADM-pre-mRNA

      ACADM-pre-mRNA

      0.0000169

      -2.2008475

      down

      DoACADM-sense-hsa_circ_0012969

      hsa_circ_0012969

      0.0000107

      -2.6164853

      down

      DoACADM-rt-circRNA

      rt-circRNA-ACADM-RABGGTB-e7e2

      0.0000059

      -2.814912

      down

      DoABR

      DoABR

      0.000000034

      3.10297237

      up

      DoABR-pre-mRNA

      ABR-pre-mRNA

      1.6E-09

      5.44875714

      up

      DoABR-sense-hsa_circ_0004931

      hsa_circ_0004931

      0.000000334

      2.96418948

      up

      DoABR-ChimeraRNA

      ChimeraRNA-ABR-NXN-e16e2

      4.16E-08

      4.49189189

      up

       

      Annotation

      DoGRegion
      _Locus

      DoGRegion
      _Length

      HostGene

      Sense overlapping
      DownstreamTranscripts

      Anti-Sense overlapping
      DownstreamTranscripts

      chr12:2697950-
      2779950:+

      82000

      CACNA1C
      (ENST00000399655)

      lncRNA ----- LINC02371-202 || LINC02371;
      rt-circleRNA || CACNA1C(ENST00000399655) 45/47 || LINC02371(ENST00000670289) 2/5

      lncRNA ----- ITFG2-AS1-201 || ITFG2-AS1

      chr1:75763720-
      75805086:+

      41366

      ACADM
      (ENST00000370841)

      CircRNA ----- hsa_circ_0012969(NM_004582 2-6/9) ;
      CircRNA ----- hsa_circ_0012970(NM_004582 4-6/9) ;
      CircRNA ----- hsa_circ_0114121(ENST00000319942 2-2/9) ;
      CircRNA ----- hsa_circ_0114123(NM_002440 2-4/20) ;
      Coding ----- MSH4-201 || MSH4 ;
      Coding ----- RABGGTB-201 || RABGGTB ;
      rt-circleRNA || ACADM(ENST00000370841) 7/12 || RABGGTB(ENST00000319942) 2/9

       

      chr17:998017-
      1003518:-

      5501

      ABR
      (ENST00000302538)

      ChimeraRNA || ABR(ENST00000302538) 1/23 || NXN(ENST00000336868) 2/8 ;
      ChimeraRNA || ABR(ENST00000302538) 16/23 || NXN(ENST00000336868) 2/8 ;
      CircRNA ----- hsa_circ_0004931(NM_022463 2-5/8) ;
      CircRNA ----- hsa_circ_0005351(NM_022463 6-7/8) ;
      CircRNA ----- hsa_circ_0041179(NM_022463 3-4/8) ;
      CircRNA ----- hsa_circ_0041180(NM_022463 2-4/8) ;
      Coding ----- NXN-201 || NXN ;
      lncRNA ----- ENST00000574560 || ENSG00000262434

      CircRNA ----- hsa_circ_0001967(NM_013337 2-3/4) ;
      Coding ----- MRM3-201 || MRM3 ;
      Coding ----- TIMM22-201 || TIMM22 ;
      lncRNA ----- ENST00000573877 || ENSG00000262133 ; lncRNA ----- ENST00000576252 || ENSG00000262003 ; lncRNA ----- ENST00000612517 || ENSG00000277491

      Transcript ID: DoG RNAID編號。

      transcript_nameDoG RNA或相關轉錄本的名稱。

      P-value評估兩組DoG表達水平的差異是否具有統計學顯著性的p值。

      |log2FC|差異倍數作log2轉換的絕對值,表示实验组与对照组之间DoG表達水平的變化倍數。

      Regulation兩組比較的上調(up)或者下调(down)。

      DoGRegion_LocusDoG RNA所在的基因組位置,以染色体号和起始、终止位置表示。

      DoGRegion_LengthDoG RNA的長度,以碱基数(nt)为单位。

      HostGeneDoG RNA的來源基因名稱。

      Sense overlapping DownstreamTranscriptsDoG RNA在同方向上重疊的下游轉錄本。

      Anti-Sense overlapping DownstreamTranscriptsDoG RNA在反方向上重疊的下游轉錄本。

    • 3. DoG RNA研究路線

        

      參考文獻

      1. Eaton JD et al: Xrn2 accelerates termination by RNA polymerase II, which is underpinned by CPSF73 activity. Genes Dev. 2018 Jan 15;32(2):127-139. PMID: 29432121; PMCID: PMC5830926.

      2. Iwakiri J et al: Remarkable improvement in detection of readthrough downstream-of-gene transcripts by semi-extractable RNA-sequencing. RNA. 2023 Feb;29(2):170-177. PMID: 36384963; PMCID: PMC9891252.

      3. Rutkowski AJ et al: Widespread disruption of host transcription termination in HSV-1 infection. Nat Commun. 2015 May 20;6:7126. PMID: 25989971; PMCID: PMC4441252.

      4. Rosa-Mercado NA et al: Hyperosmotic stress alters the RNA polymerase II interactome and induces readthrough transcription despite widespread transcriptional repression. Mol Cell. 2021 Feb 4;81(3):502-513.e4. PMID: 33400923; PMCID: PMC7867636.

      5. Cugusi S et al: Heat shock induces premature transcript termination and reconfigures the human transcriptome. Mol Cell. 2022 Apr 21;82(8):1573-1588.e10. PMID: 35114099; PMCID: PMC9098121.

      6. Grosso AR et al: Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma. Elife. 2015 Nov 17;4:e09214. PMID: 26575290; PMCID: PMC4744188.

      7. Heinz S et al: Transcription Elongation Can Affect Genome 3D Structure. Cell. 2018 Sep 6;174(6):1522-1536.e22. PMID: 30146161; PMCID: PMC6130916.

      8. Vilborg A et al: Widespread Inducible Transcription Downstream of Human Genes. Mol Cell. 2015 Aug 6;59(3):449-61. PMID: 26190259; PMCID: PMC4530028.

      9. Hennig T et al: HSV-1-induced disruption of transcription termination resembles a cellular stress response but selectively increases chromatin accessibility downstream of genes. PLoS Pathog. 2018 Mar 26;14(3):e1006954. PMID: 29579120; PMCID: PMC5886697.

      10. Dasilva LF et al: Integrator enforces the fidelity of transcriptional termination at protein-coding genes. Sci Adv. 2021 Nov 5;7(45):eabe3393. PMID: 34730992; PMCID: PMC8565846.

      11. Roth SJ et al: ARTDeco: automatic readthrough transcription detection. BMC Bioinformatics. 2020 May 26;21(1):214. PMID: 32456667; PMCID: PMC7249449.

      12. Wiesel Y et al: DoGFinder: a software for the discovery and quantification of readthrough transcripts from RNA-seq. BMC Genomics. 2018 Aug 8;19(1):597. PMID: 30089468; PMCID: PMC6083495.

      13. Shah N et al: Tyrosine-1 of RNA Polymerase II CTD Controls Global Termination of Gene Transcription in Mammals. Mol Cell. 2018 Jan 4;69(1):48-61.e6. PMID: 29304333.

      14. Glažar P et al: circBase: a database for circular RNAs. RNA. 2014 Nov;20(11):1666-70. PMID: 25234927; PMCID: PMC4201819.

      15. Harrow J et al: GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012 Sep;22(9):1760-74. PMID: 22955987; PMCID: PMC3431492.

      16. Birney E et al: An overview of Ensembl. Genome Res. 2004 May;14(5):925-8. PMID: 15078858; PMCID: PMC479121.

      17.  Grosso AR et al: Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma. Elife. 2015 Nov 17;4:e09214. PMID: 26575290; PMCID: PMC4744188.

      18.  Vo JN et al: The Landscape of Circular RNA in Cancer. Cell. 2019 Feb 7;176(4):869-881.e13. PMID: 30735636; PMCID: PMC6601354.

      19.  Zhang Y et al. The Biogenesis of Nascent Circular RNAs. Cell Rep. 2016 Apr 19;15(3):611-624. PMID: 27068474.

      20.  Liang D et al. The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting. Mol Cell. 2017 Dec 7;68(5):940-954.e3. PMID: 29174924; PMCID: PMC5728686.

      21.  Varley KE et al. Recurrent read-through fusion transcripts in breast cancer. Breast Cancer Res Treat. 2014 Jul;146(2):287-97. PMID: 24929677; PMCID: PMC4085473.

      22.  Kim P et al. FusionGDB 2.0: fusion gene annotation update aided by deep learning. Nucleic Acids Res. 2021 Nov 10

      23. Morgan M. et al. It's a DoG-eat-DoG world-altered transcriptional mechanisms drive downstream-of-gene (DoG) transcript production. Mol Cell. 2022; 82(11):1981-1991 [PMID:35487209]

      24. Lai F. et al. Directed RNase H Cleavage of Nascent Transcripts Causes Transcription Termination. Mol Cell. 2020; 77(5):1032-1043.e4 [PMID:31924447]

      25. Rodríguez-Molina JB. et al. Knowing when to stop: Transcription termination on protein-coding genes by eukaryotic RNAPII. Mol Cell. 2023; 83(3):404-415 [PMID:36634677]

      26. Hao JD et al: DDX21 mediates co-transcriptional RNA m(6)A modification to promote transcription termination and genome stability. Mol Cell 2024; 84(9):1711-1726 e1711.[PMID: 38569554]